

Cloud and Precipitation Process Measurement Concept

Partnership Options

Eastwood Im

Jet Propulsion Laboratory, California Institute of Technology, USA

Kinji Furukawa Japan Aerospace Exploration Agency, Japan

Examples of Mission Concepts

Single	Multiple		Multiple		Multiple	
Spacecraft	Spacecraft		Smallsats		Smallsats and	
					Cubesats	
KuKaW+m	Platform A	KuKa	Platform A	Ku small	Platform A	KuW smallsat
W		traditional	(x4)	sats		
		free flyer				
		or				
		smallsat				
	Platform B		Platform B	KaW small	Platform B	Ka smallsat
	Tidtioiiii B	smallsat	Tideroriii B		Tidelolli B	
		Silialisat		sat		(x2)
	Platform C	μw	Platform C	μw smallsat	Platform C	Sounder
		freeflyer				
		or				
		smallsat				
		Sirialisat			Platform D	submm
						30011111

These concepts can be further developed and evaluated based on candidate sensors currently under development or planned for near term development.

Options

Identification of Potential Instrument Areas for Joint Collaboration (Case study)

	Case 1	Case 2	Case 3	Case 4
W band radar	NASA	NASA	NASA	NASA
Ka band radr	NASA	JAXA	_	RainCube
Ku band radr	JAXA	JAXA	JAXA	JAXA

Microwave Imager	NASA or JAXA	
------------------	--------------	--

Satellite bus	NASA or JAXA
---------------	--------------

Launch NASA or JAXA

CAPPM-related Instrument Concepts*

	Conical Microwave	mm/Sub-mm
Radar Instruments	Imager Instruments	radiometer/sounder
JAXA DPR-2 KuKa	GMI #2	MASC (Microwave Atmospheric
		Sounder for Cubesat)
JPL Ka Raincube	COWVR FO (Compact	IceCube (874 GHz)
	Ocean Wind Vector	
	Radiometer)	
JAXA Ku small sats		SWIRP Compact Submm-Wave
		and LWIR Polarimeters for Cirrus
		Ice Properties
JPL MASTR Multi		SAPHIR NG
Application Smallsat Tri-		MW sounder
Band Radar		
ACE-class Ka/W or		TWICE Wide-band Millimeter
Ku/Ka/W Doppler active		and Sub-Millimeter Wave
scanning radar (GSFC-		Radiometer Instrument to
NG & JPL-Nuvotronics-		Measure Tropospheric Water
Raytheon solutions)		and Cloud ICE

^{*}This is not an exhaustive survey of all instrument concepts but reflects inputs provided to the CAPPM working group.

Instrument Readiness for Constellation Implementation (1)

Now:

- RainCube (JPL) 6U, Ka-band radar with 0.5m antenna and 1 nadir beam
- RainCube2 (JPL) in one-web-class bus, 0.75-0.8m fix antenna dish with 3-4 beams
 - Two RainCubes for Doppler meas.
- COVWR (JPL) as is 150-kg class smallsat. It has a radiometer with smaller antenna
- MASC and/or TEMPEST-D (JPL) 6-U cubesat with multi-channel radiometer
- IceCube (GSFC) 3-U cubesat with in submillimeter-wave radiometer
- GMI #2 (GSFC)
- JAXA Ku radar constellation four (4) 500-kg class smallsats with Ku-band wide crosstrack scanning radar
- On-orbit missions (Mega-T, GPM, etc)
- OceanSAT-3 mission (ISRO) Scatterometer + SST + ocean color (2020 launch)
- ESA atmos missions + EarthCARE

Instrument Readiness for Constellation Implementation (2)

Now + 3yrs:

- MASTR (JPL) Ka/W-band radar with 1-m scanning antenna and Doppler
- CloudCube (JPL) RainCube at W-band, 0.75-0.8m fix antenna with scanning
- COVWR with larger hybrid mesh antenna
- SWIRP (GSFC) 12-U cubesat with IceCube & LWIR as payloads
- TSU/HSU (ISRO) temperature/humidity microwave sounders
- TWICE (CSU/JPL) 6U cubesat with a 15-channel radiometer spanning 118-670GHz for ice, temp, hum. sounding

Now + 5yrs:

- MASTR-2 (JPL) Ku/Ka/W-band radar with with 1m+ scanning antenna and Doppler
- SAPHIR-NG (CNES) 6-channel microwave sounder in microsat

Notional Distributed Train Concept

- 500 km altitude
- 30 deg inclination

TWICE/SWI RP/TSU/HSU

MASTR 1 RainCube RainCube1-2 (Ka/W)

COWVR 0M

IceCube/TWICE/ SWIRP/TSU/HSU